

Quantitative Properties of 1-Bridge Braids

Dane Gollero¹, Viridiana Neri², Izah Tahir³, Len White⁴, Dr. Siddhi Krishna², Dr. Marissa Loving³

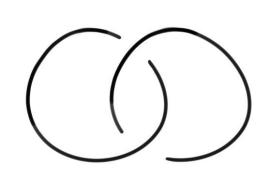
¹University of Utah, ²Columbia University, ³Georgia Tech, ⁴Cal Poly Pomona

Knots and Braids

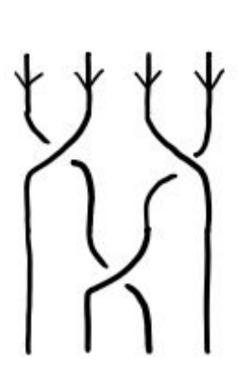
Definitions:

• A **knot** is a potentially knotted circle in 3-dimensional space.

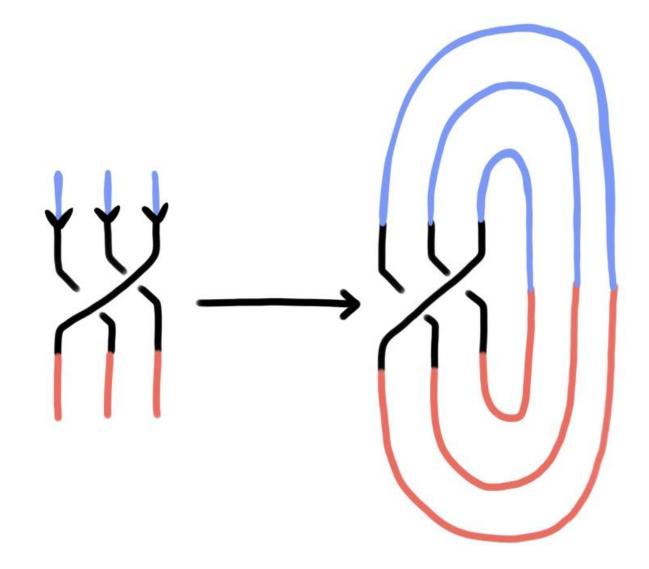
• A **link** is a collection of knots.



• An *n*-stranded braid is a collection of *n* parallel strands with crossings between adjacent stands.



Braid Closures

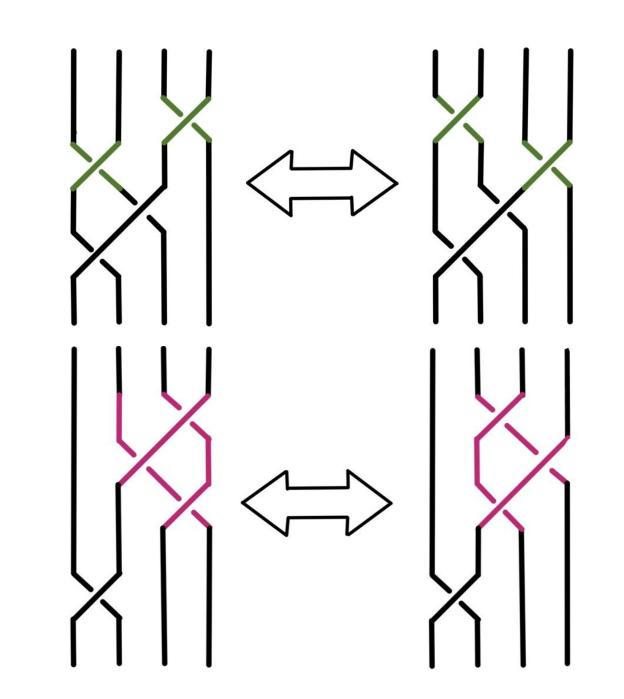


Fact (Alexander's Theorem):

Every knot is realized as the closure of some braid.

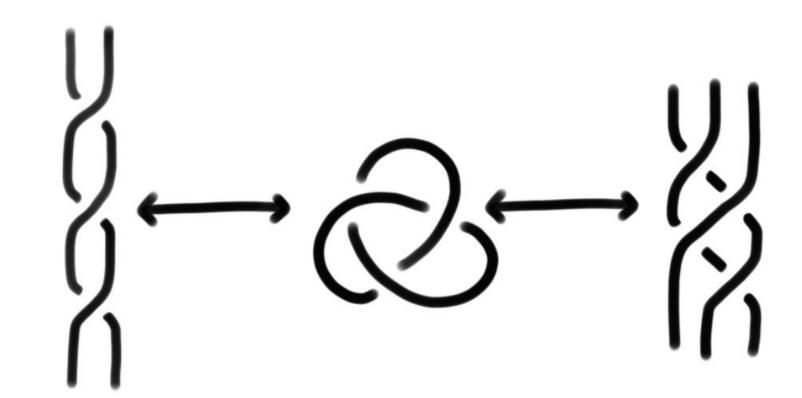
Markov's Theorem

Different braids can have the same closure. **Markov's theorem** tells us how these braids are related.

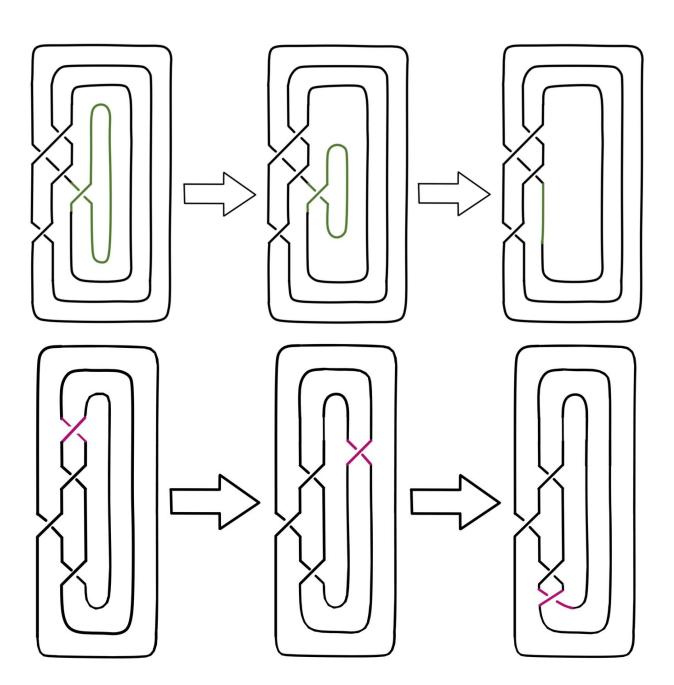


The Braid Index

The **braid index of a knot** *K*, denoted *i(K)*, is
the fewest number of
strands required to
present *K* as the closure
of some braid.



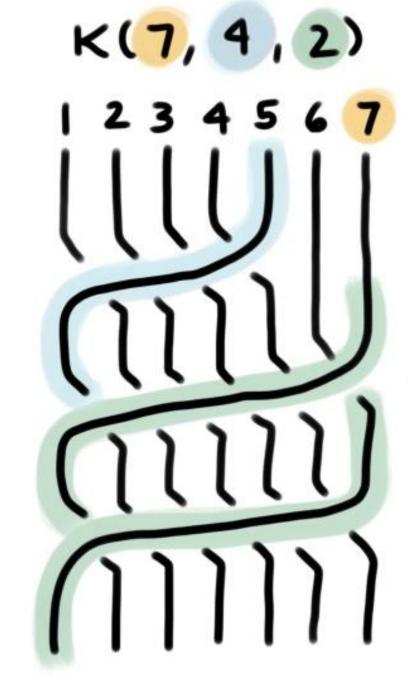
In general, it is difficult to determine the braid index of an arbitrary knot.



1-Bridge Braids

A 1-bridge braid, *K(w,b,t)*, is formed by taking the closure of a braid defined via three parameters:

- w = # of strands
- b = bridge number
- t = twist number



Studied in [1], these knots have interesting Dehn surgery properties.

Our Project

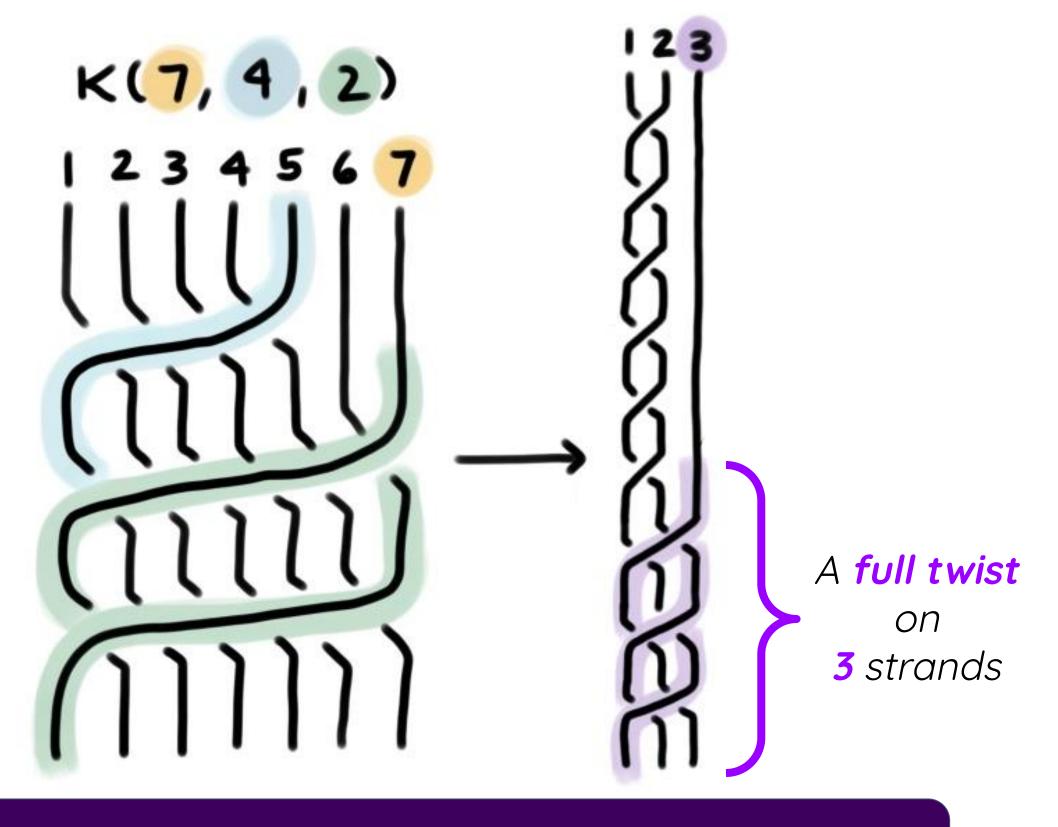
Question: What is i(K(w,b,t))?

Theorem (G-K-L-N-T-W): The braid index of a 1-bridge braid K(w,b,t) is determined by its parameters:

$$i(K(w, b, t)) = \begin{cases} w & t \ge w \\ t & w > t > b \\ t + 1 & b \ge t \end{cases}$$

Proof Sketch:

- 1. Use Markov moves to rewrite braid.
- 2. Use the Morton; Franks-Williams Theorem: if ω is a positive braid word on n strands, and $\beta \approx \omega^*(\text{full twist})$, $i(\beta) = n$.



References

- 1. David Gabai, *1-bridge braids in solid tori*, Topology Appl.37(1990), no. 3, 221–235
- 2. H. R. Morton, *Seifert circles and knot polynomials*, Math. Proc. Cambridge Philos. Soc.99(1986), no. 1, 107–109.MR 809504
- 3. John Franks and R. F. Williams, *Braids and the Jones polynomial*, Trans. Amer. Math. Soc.303(1987), no. 1,97–108. MR 896009