
Bootstrapping the Likelihood Ratio Test for Change Point Analysis
Lili Donovan, Kimihiro Noguchi, Ramadha Piyadi Gamage

Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA

Introduction
Background: The basis of change point analysis is to detect changes
in distribution (behavior) from a sequence of observations because the
distribution may change as the sequence progresses [1]. For example,
suppose that we are in charge of monitoring some process to ensure
that its observations stay within some range for quality control. That
way, we may be able to minimize loss should we detect changes in
the behavior of these observations. To improve the robustness of the
change-point analysis, we present a simulation study which applies
the nonparametric bootstrap to the likelihood ratio (LR) test. The
results show that the bootstrapped LR test is robust for non-normal
observations.
Set-up: Using the binary segmentation method, the change point
problem under the assumption that only one change point exists is
equivalent to a hypothesis test with null hypothesis,

H0 : µ1 = µ2 = · · · = µn,

and alternative hypothesis,
Ha : µ1 = µ2 = · · · = µk 6= µk+1 = · · · = µn,

for some 1 < k < n, where k is the unknown change point location.
Let {xi}ni=1 be a sequence of independent and homoscedastic random
observations. Furthermore, let

S = n∑
i=1

(xi − x̄)2, Sk = k∑
i=1

(xi − x̄1)2 + n∑
i=k+1

(xi − x̄2)2.

The difference S−Sk is mathematically equivalent to the LR statistic
assuming normality. We wish to find k such that this difference is
maximized, as this k corresponds to the most likely location of a
change point. Thus, we take our test statistic to be

U = max
1<k<n

√
S − Sk.

The asymptotic distribution of U is obtained after a slight transfor-
mation. Let

U = a−1
n (U − bn),

where an = (2 log log n)−1/2 and bn = a−1
n + 2−1an log log log n.

Then, U asymptotically has the cumulative distribution function (cdf)
FU(x) = e−2π1/2e−x,−∞ < x <∞.

In practice, FU(x) gives an approximate p-value, and we reject H0
when p-value < α for some desired significance level α. However,
FU(x) may not be suitable for a small sample size [2].

Nonparametric Bootstrap Implementation

Nonparametric Bootstrap:

The nonparametric bootstrap offers a robust alternative to the large-sample approxima-
tion or parametric bootstrap for statistical inference. It is valid for a wide range of data-
generating processes.

Algorithm for Nonparametric Bootstrap:
1 We split the original data at k for which S − Sk is maximized. Then, we subtract the
respective sample mean from each section so that the centered data can be resampled.

2 We generate a bootstrap sample from the centered data using replacement. We denote
the b-th resample by {ub1, ub2, . . . , ubn}, b = 1, . . . , B, where B represents a sufficiently
large number of bootstrap resamples.

3 Using B resamples, we compute B test statistics {U ?
1 , U

?
2 , . . . , U

?
B}, where U ?

b is the LR
test statistic for the b-th resample, b = 1, 2, . . . , B.

4 We obtain the bootstrap p-value by p = #{U < U ?
b , b = 1, . . . , B}/B, where U is the

LR test statistic from the original data.

Simulation Set-up:

It is important to verify the validity of the nonparametric bootstrap method. The method
is tested with different types of distributions (N(0, 1) and Exp(1)). For each of these
distributions, we have sample sizes of 20, 30, 50, 100, 200, and 500. Moreover, we vary the
change point location to further investigate the power of the test. The robustness is assessed
by observing how close the empirical Type I error rate (αe) is to the nominal significance
level α = 0.05 using a Monte Carlo simulation.
1 We generate M samples of size n from some distribution under H0 (e.g., N(0, 1)), each
of which generates an observed LR test statistic.

2 Let {U1, U2, ....UM} be the set of observed LR test statistics from M Monte Carlo
samples. The bootstrap p-value for Um, m = 1, 2, . . . ,M , is given by
pm = #{Um < U ?

m,b, b = 1, . . . , B}/B, where U ?
m,b is the LR test statistic for the b-th

resample of the m-th Monte Carlo sample.

3 Finally, the actual Type I error rate
P (Reject H0 |H0 is true)

is approximated by the empirical Type I error rate
αe = #{pm < α,m = 1, . . . ,M}/M.

Simulation Results
n 20 30 50 100 200 500

Dist. N(0, 1) 0.14889 0.11167 0.09044 0.07000 0.06056 0.05833
Exp(1) 0.14189 0.11733 0.09033 0.06889 0.06033 0.05544

Table 1: Empirical Type I error rates with M = 9000 and B = 1000 at α = 0.05.
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Figure 1: Power curves for standard normal and exponential distributions with
M = 1000 and B = 1000 at α = 0.05. The top orange curves are for n = 500
and the bottom blue curves are for n = 20. The change location expressed in
terms of the proportion is on the x-axis. Each change point has a jump size of 0.5.

Observations:
•The empirical Type I error rate converges to the nominal
significance level at α = 0.05, but a moderate sample size
n ≥ 100 is required to obtain a robust test.
•The power curves show an increase in the power of the test as the
sample size increases. Moreover, the power curves achieve their
maxima at around 0.5, indicating that the LR test statistic can
most easily detect a mean change if that occurs at around the
midpoint of the data.

Conclusions
The nonparametric bootstrap method provides a robust and power-
ful alternative to the asymptotic method for the detection of change
point locations. With at least a moderate sample size of n = 100 or
larger, the nonparametric bootstrap method shows promising simula-
tion results, even if the original data are non-normal.

References
[1] J. Chen, A. Gupta, and J. Pan, “Information criterion and change point

problem for regular models,” Sankhyā: The Indian Journal of Statistics,
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