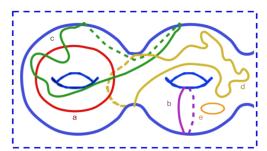

Automorphisms of the Fine Curve Graph



Anna Pham¹, Claudia Yao² (joint work with Adele Long³)
Project Mentors: Dan Margalit and Yvon Verberne

Fine Curve Graph FC(S)

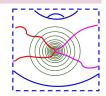
Vertices: essential simple closed curves in S
Edges: Disjointness

Main Theorem

The natural map $Homeo(S) \rightarrow Aut FC(S)$ is an isomorphism.

Extended Fine Curve Graph *EFC(S)*

Vertices: simple closed curves (including inessential curves)



Theorem (Farb-Margalit)

The natural map $Homeo(S) \rightarrow Aut \ EFC(S)$ is an isomorphism.

Subgraph of $EFC(S) \leftrightarrow Point in S$

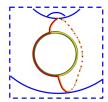
 $(c_i) \rightarrow c \Leftrightarrow a, b$ intersecting infinitely many c_i : a intersects b

Proof Approach: *EFC(S)* to *FC(S)*

We want a map: $Aut FC(S) \rightarrow Aut EFC(S) \cong Homeo(S)$

Characterizing Curves

The **hull** of a set of curves: union of the curves and all the disks they bound



The hull of two curves contains no other curve.

Curve Pairs

Use essential curves characterizing inessential ones. More complex to characterize.

Acknowledgements

We would like to thank the NSF, the Georgia Tech School of Math, Dan Margalit, Yvon Verberne, and Benson Farb. This project was funded by NSF Grant DMS-181843.