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ABSTRACT 

Why solve polynomial systems?
Polynomial systems occur throughout mathematics and its
applications. For instance, polynomial systems arise in robotics
when describing and designing mechanisms, see Figure 1.

(a) Wing mechanism, see [5] (b) Four-bar mechanism, see [4]

Figure 1: Some mechanism designs described by polynomials.

Polynomial systems in applications can be difficult to solve.
Our goal is to develop efficient numerical
algorithms for solving polynomial systems.

Homotopies for solving systems
Homotopy continuation algorithms are useful numerical methods
for quickly solving polynomial systems. Some features include:

• Solves a target polynomial system F(x) using a similar, simpler
start system G(x) and family of polynomials H(x; t).

• H(x; t) defines paths interpolating between the solutions of F,
denoted {F = 0}, and the solutions of G, denoted {G = 0}.

• Paths are tracked numerically from t = 0 to t = 1.
• Paths are independent: ideal for fast parallel computation.
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Figure 2: Cartoon of homotopy continuation for solving a system F.

Definition (Optimal homotopy). A homotopy is optimal if
#{G = 0} = #{F = 0} (counted with multiplicity) and these
solution sets are connected by smooth paths.

Homotopy continuation challenges

Some numerical issues may arise in these homotopy
continuation algorithms. For example:

• Paths crossing. Avoided by the gamma-trick.
• Singular solutions to F. Handled through endgames.
• Diverging paths. Only solved by choosing a start system G such

that #{G = 0} = #{F = 0} (counted with multiplicity).
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Figure 3: Path-tracking challenges in homotopy continuation.

Optimal homotopy algorithms will, in particular, avoid
expensive, extraneous diverging paths.

—————QUESTION—————
Can we develop an optimal homotopy

algorithm for solving polynomial systems?

———————————————

Previous work
Many algorithms compute a bound d on #{F = 0} and then
generate a simple start system G with d solutions.

Homotopy # Points in start system

Total-Degree Bézout number
≥

Multihomogeneous r room Multihomogeneous Bézout number
≥

Polyhedral BKK bound (mixed volume)

Can we beat the polyhedral homotopy?

Strategy & Results
The goal is to create a family of polynomial systems Ft such that:

(1) Ft has the same number of solutions for all t ∈ C,
(2) Ft=1 = F, and
(3) Ft=0 is a simple system to solve.

Our strategy is to use Anderson’s toric degeneration from [1] for
varieties which have an associated finite Khovanskii basis. The
toric degeneration will guarantee the above three properties.

Khovanskii homotopy algorithm sketch

• Compute a finite Khovanskii basis associated to {F = 0} using
the SubalgebraBases package for Macaulay2 [2, 3].

• Compute an embedding for Anderson’s toric degeneration.
• Perform a weight degeneration on the resulting equations.
• Use resulting family of polynomials Ft as an optimal

homotopy to compute {F = 0}.

Khovanskii homotopy results

• Number of paths tracked is equal to the normalized volume of
the Newton-Okounkov body associated to {F = 0}, which can be
less than the BKK bound.

• Homotopy is optimal for computing solutions to systems.
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