Central Limit Theorems for Spatial Averages of Stochastic Heat Equation

Sefika Kuzgun

AWM Poster Session, Joint Mathematics Meetings 2022

Introduction

Consider the stochastic heat equation

$$\frac{\partial u}{\partial t} = \frac{1\partial^2 u}{2\partial x^2} + u\dot{W}, \qquad x \in \mathbb{R}, \ t > 0$$
 (1)
where $u_0(x) = \delta_0(x)$

and \dot{W} space-time white noise:

$$E\left[\dot{W}(t,x)\dot{W}(s,y)\right] = \delta_0(t-s)\delta_0(x-y).$$

Existence of mild solution

There exists a unique measurable and adapted random field $u = \{u(t, x)\}_{(t, x) \in \mathbb{R}_+ \times \mathbb{R}}$ such that

$$\sup_{(t,x)\in[0,T]\times\mathbb{R}} \mathrm{E}\left[|u(t,x)|^p\right] < \infty,$$

and for all $t \geq 0$ and $x \in \mathbb{R}$

$$u(t,x) = p_t(x) + \int_{[0,t]\times\mathbb{R}} p_{t-s}(x-y)u(s,y)W(ds,dy).$$
(2)

[Walsh '84, Chen & Dalang '15]

Renormalized solution

- The process $x \mapsto U(t,x) := u(t,x)/p_t(x)$ is stationary. [Amir, Corwin & Quastel '11]
- The equation (2) can be reformulated in terms of U: [Chen, Khoshnevisan, Nualart & Pu '20]

$$U(t,x) = 1 + \int_{[0,t]\times\mathbb{R}} p_{\frac{\tau(t-\tau)}{t}}(\xi - \frac{\tau}{t}x)U(\tau,\xi)W(d\tau,d\xi).$$
 (3)

Spatial averages

- $\mathbb{E}\left[\int_{-R}^{R} U(t,x)dx\right] = 2R$
- $\Sigma_{R,t}^2 := \mathbb{E}\left[\left(\int_{-R}^R U(t,x)dx 2R\right)^2\right] \sim R \log R.$
- Spatial averages:

$$G_{R,t} := \frac{1}{\sum_{R,t}} \left(\int_{-R}^{R} U(t,x) dx - 2R \right)$$

Malliavin calculus

Integration by parts

$$\mathrm{E}\left[\langle DF, v \rangle_{\mathfrak{H}}\right] = \mathrm{E}\left[F\delta(v)\right]$$

 \bullet A crucial property: Any adapted and square integrable process v belongs to ${\rm Dom}\,\delta$ and

$$\delta(v) = \int_{\mathbb{R}_+ \times \mathbb{R}} v(s, y) W(ds, dy).$$

• In the aforementioned model, we have $G_{R,t} = \delta(v_{R,t})$ where

$$v_{R,t} = \frac{U(s,y)}{\sum_{R} t} \int_{-R}^{R} p_{\frac{s(t-s)}{t}}(x - \frac{s}{t}y) dx$$

Estimates for the derivatives

- $||D_{s,y}U(t,x)||_p \le c_{T,p}p_{\frac{s(t-s)}{t}}(y-\frac{s}{t}x).$
- $\|D_{r,z}D_{s,y}U(t,x)\|_{p} \leq c_{T,p}p_{\frac{s(t-s)}{t}}(y-\frac{s}{t}x)p_{\frac{r(s-r)}{s}}(z-\frac{r}{s}y).$
- $\left\| \left(\langle DG_{R,t}, v_{R,t} \rangle \right)^{-1} \right\|_{p} \le c_{t,p,\gamma} (\log R)^{\gamma}$

Other cases

• If $u_0 = 1$, and $\sigma(u)$ then

$$d_{TV}(F_{R,t}, N) \le \frac{C_t}{\sqrt{R}},$$

$$\sup_{x \in \mathbb{R}} |f_{F_{R,t}}(x) - \phi(x)| \le \frac{C_t}{\sqrt{R}}.$$

• If $u_0 = 1$, general dimension d,

$$E\left[\dot{W}(t,x)\dot{W}(s,y)\right] = \delta_0(t-s)|x-y|^{-\beta}.$$

then

$$d_{TV}(F_{R,t}, N) \le C_t R^{-\beta/2}$$

$$\sup_{x \in \mathbb{R}} |f_{F_{R,t}}(x) - \phi(x)| \le C_t R^{-\beta/2}.$$

• Other equations like wave and fractional heat.

Theorem

Let N denote a standard normal random variable. Then, for all $R \geq R_0$:

$$d_{\text{TV}}(G_{R,t}, N) \le \frac{C_t \sqrt{\log R}}{\sqrt{R}}.$$

[Chen, Khoshnevisan, Nualart & Pu '20]

Additional Information

This is a joint work with David Nualart. arXiv:2005.13676

Main Theorem

For all fixed t > 0 and $R \ge R_0$, $G_{R,t}$ has a density $f_{G_{R,t}}$. Moreover, let $\gamma > \frac{19}{2}$ and ϕ be the density of standard normal distribution, then, for all $R \ge R_0$:

$$\sup_{x \in \mathbb{R}} |f_{G_{R,t}}(x) - \phi(x)| \le \frac{C_t(\log R)^{\gamma}}{\sqrt{R}}.$$

[K. & Nualart '21+]

Selected references

- An introduction to stochastic partial differential equations, Walsh, John B, 1986
- 2 Estimation of densities and applications, Caballero, María Emilia and Fernández, Begoña and Nualart, David, 1998
- 3 Stein's method on Wiener chaos, Nourdin, Ivan and Peccati, Giovanni, 2008
- ♠ Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions, Amir, Gideon and Corwin, Ivan and Quastel, Jeremy, 2011
- On the chaotic character of the stochastic heat equation, before the onset of intermittency, Conus, Daniel and Joseph, Mathew and Khoshnevisan, Davar, 2013
- 6 Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions, Chen, Le and Dalang, Robert C, 2015
- Regularity and strict positivity of densities for the nonlinear stochastic heat equation, Chen, Le and Hu, Yaozhong and Nualart, David, 2016
- 8 A central limit theorem for the stochastic heat equation, Huang, Jingyu and Nualart, David and Viitasaari, Lauri, 2020

Existence of density

• Assume that $F = \delta(v) \in \mathbb{D}^{2,6}$, $E[F^2] = 1$ and $E[|\langle DF, v \rangle_{\mathfrak{H}}|^{-4}] < \infty$. (4)

Then,

$$f_F(x) = E\left[1\left\{F > x\right\}\delta\left(\frac{v}{\langle DF, v\rangle_{\mathfrak{H}}}\right)\right]$$

Malliavin-Stein method

• Let $F = \delta(v) \in \mathbb{D}^{1,2}$, N standard normal random variable.

$$d_{\text{TV}}(F, N) \le 2\sqrt{\text{Var}\langle DF, v\rangle_{\mathfrak{H}}}.$$

• Let $F = \delta(v) \in \mathbb{D}^{2,6}$ satisfy (4), then $\sup_{x \in \mathbb{R}} |f_F(x) - \phi(x)|$ $\leq C \|(\langle DF, v \rangle_{\mathfrak{H}})^{-1}\|_4^2 \left(\mathbb{E} \left[|\langle D\langle DF, v \rangle_{\mathfrak{H}}, v \rangle_{\mathfrak{H}}, v \rangle_{\mathfrak{H}}|^2 \right] \right)^{1/2}$ $+ \left(\|F\|_4 \|(\langle DF, v \rangle_{\mathfrak{H}})^{-1}\|_4 + 2 \right) \left(\operatorname{Var}\langle DF, v \rangle_{\mathfrak{H}} \right)^{1/2}.$