MUSICAL POLYBIUS CIPHER

NAYMA KIM FACULTY ADVISOR: DR. MICHAEL P. SACLOLO

1. POLYBIUS CIPHER

The *Polybius* cipher square is a 5 by 5 array used in Ancient Greece to send secret messages. Encryption of a letter is done by assigning a pair of numbers, one from the left most column followed by a second from the top row [1]. To further enhance encryption, Kondo and Mselle [1] expanded the original Polybius into an 8 by 8 array.

		•	•									
		1	2	3	4	5						
	1	A	В	Γ	Δ	E						
	2	Z	Н	Θ	I	K						
	3	Λ	M	N	[1]	О						
	4	П	P	\sum	Т	Υ						
	5	Φ	X	Ψ	Ω							
A	Ancient Greek Polybius											

	1	2	3	4	5	6	7	8
1	P	О	L	Y	2	0	1	3
2	A	В	С	D	Е	F	G	F
3	Ι	J	K	M	N	Q	R	S
4	T	U	V	W	X	Z	4	5
5	6	7	8	9		!	11	#
6	\$	%	&	,	()	*	+
7	,	-		/	:	;	/	=
8	>	?	@	[\]	^	_

Extended Polybius Cipher [1]

2. EXTENDED MUSICAL POLYBIUS CIPHER

In a musically extended Polybius square, musical notes from the C Major scale are used in place of numbers. A character is encrypted by two notes. The first note is assigned to the treble clef of a music sheet, while the second note to the bass clef. Thus, a message encoded on a music sheet that can be read and performed. Encryption can be further enhanced by including sharps and flats to increase difficulty in deciphering and help brighten up the sound.

	C	D	E	F	G	A	В	\$
С	A	X	/	1	M)	Р	Н
D	2	В	=	I	С	@	+	5
Е	Q		С]	J	3	\sim]
F	4	R	9	0	?	K	\$	D
G	V	&	•	!	Е	6	L	O
A	,	W	-	Т	,		_	7
В	Y	%	X	11	U	#	G	>
\$	S	Z	<	8	[F	N	*

Extended Polybius Cipher with Musical Notes

		J										
Plaintext	Н	Е	L	L	0		W	О	R	L	D	!
Position	1	2	3	4	5	6	7	8	9	10	11	12
Ciphertext	C	G	G	В	G	D	A	\$	F	В	F	F
Ciphertext 7:	&	G	В	G	5	E	D	G	D	G	5	F

Encryption for Extended Musical Polybius

5. FURTHER RESEARCH

Continue developing the 12 by 12 Polybius Cipher.

Permutations of 144 for placement of letters, numbers, and symbols. Convert all permutations into a CVS file.

What other items could be placed in the blank spaces squares?

3. DEGREE AND BEAT SUBSTITUTION

In music theory, note sound frequency is grouped by numbers with the lowest sound 0 to the highest, 9. Changing the frequency degree can further strengthen encryption. Treble clef notes are substituted by degrees of 4, 5, 6, and bass-clef notes are substituted by 2, 3, and 4. Symbols, numbers, and spaces are substituted by 4 in the treble-clef staff and 3 in the bass-clef which are rewritten into the original encryption for the receiver.

4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5
A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	Р	Q	R	S	T	U	V	W	X	Y	Z
2	3	4	2	3	4	2	3	4	2	3	4	2	3	4	2	3	4	2	3	4	2	3	4	2	3

Plaintext	Н	Е	L	L	0		W	O	R	L	D	
Position	1	2	3	4	5	6	7	8	9	10	11	
Ciphertext	C_5	G_5	G_6	B ₆	G_6	D_4	A_5	•	F_6	B ₆	F_4	
Ciphertext 1 :	\$	G_3	B_4	G_4	\$	${ m E}_4$	D_3	G_4	D_4	G_4	5	

HELLÓ WORLD! with Scale Degree Change

Original Cipher for HELLO WORLD! with Degree Change Sharps/Flats.

Each measure with a $4\|4$ count constitutes four beats per measure. Thus, a quarter note represents one beat, and the other notes have beats as indicated in the following table.

	Note	M	Whole		alf C	Quarter		Eight Tr		iplet	Sixtee	enth	
	Beats	4		2	1			1/2	13	1	1/4		
Letter	A	В	С	• • •	X	Y	Z	Spa	ce	Sym	nbols	Nu	mbers
Note	4	2	1	• • •	1/4	4	2	1		1/2			1/3

Beat Substitution of Alphabet, Spaces, Symbols, and numbers.

Musical Cipher for HELLO WORLD! with Beat Substitution

6. REFERENCES

- [1] Tabu S. Kondo and Leonard J. Mselle. An Extended Version of the Polybius Cipher. *International Journal of Computer Applications*, 79(13):30–33, October 2013.
- [2] M. Yamuna and Siddarth and Harish V. Sankar, A. and Ravichandran. Encryption of a Binary String Using Music Notes and Graph theory. *International Journal of Engineering and Technology*, 5:2920–2925, 06 2013.
- [3] Norissa Lamaute, Alexa Piccoli, Li-Chiou Chen, and Andreea Cotoranu. A Substitution Cipher for Musical Cryptography. In *Proceedings of Student-Faculty Research Day, CSIS, Pace University,*.

4. 12 BY 12 MUSICAL POLYBIUS CIPHER

Converting the 8 by 8 Polybius into a musical cipher increases complexity in encryption. Thus, extending the Musical Polybius into a 12 by 12 array would further strengthen it. This uses all original C Major music notes in addition to flat notes. Encryption follows as the old way, the first letter is assigned by a note from the left-most column and the second from the top row, switching when assigning the second letter. The pair of notes are then placed in the treble-clef and bass-clef staffs respectively.

	С	D	Db	E	Εþ	F	G	Gb	A	Αþ	В	ВЬ
C]		+		{		>		,		=	+
D					4			•				_
Db	11	В	С		?		1			V	W	
E	A			D					U	•		X
Εþ	Z	}			Е			T				3
F	(9		خ	F	S		5	/)
Gb	8			\$		R	G		i	@		!
Gb	Y	_			Q			Н				0
A	M		•	Р	&				Ι			L
Αþ		N	O				π			J	K	
В	#				*	2				;		:
ВЬ		>		7			<	6			\$	\
			10.1	10) D.	1 1.	•	<u> </u>	1			

Musical Cipher for HELLO WORLD! Using 12 by 12 Polybius Square

The use of permutations could be a way to fill out the 12 by 12 array. A Python program code is being developed to generate all the permutations of the entries of an array and reshape it into a square matrix. Currently, we are trying to write all the permutations into a CSV file to reduce computing load.

