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Background and Research Goals

In-Host Level

Develop a mathematical model that describes the 

immune responses to SARS-CoV-2 infection.

Population Level

Develop a mathematical model to predict the 

how SARS-CoV-2 spreads throughout the United 

States.

Lymphatic Compartment

Viral Load and Active Cell Counts Among Patients

Figure 5: Clinical data of viral swabs from

untreated COVID-19 patients averaged from

Vetter et al. with an incubation period of 6 days.

Figure 6: The number of active cells grows as

naïve cells transform. Active B cell count,

however, falls as it is transformed into

Antibodies.

Figure 2: The mortality class (yellow) is fit to cumulative disease-induced mortality data from the third wave 

(blue) using MATLAB optimization package fminsearch. With the constant beta model (left), cumulative 

mortality overestimates data after the third wave (red), as it does not take into account the mitigation 

strategies responsible for lowering transmission rates. Using a time-varying beta (right) proves more 

predictive, which is why we chose to develop this model over the constant beta model.
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In summary, the models can be used in tandem to understand how SARS-CoV-2 spreads through 

populations and within the body. These models serve as a foundation that can be built upon to include more 

biological complexities. Fitting the models to data specific to patients with ESRD can give insight into 

the transmission, rate of viral elimination, and other important parameters that differ between healthy 

individuals and those with ESRD. For the population-level model, we recommend using the time-varying 

β as it can match the time scale of pandemic waves, and with more tuning can predict the timing and height 

of future waves. The second recommendation would be to add vaccinations as a function of time. For the 

in-host level model, we recommend the implementation of cytokine storms.

Summary and Future Work

Abstract
With the emergence of SARS-CoV-2 and its subsequent effect on public health, mathematical models

have become vital in gaining a better understanding of the virus, providing insight into its infection and spread,

and allowing us to predict how it affects vulnerable populations, e.g., patients with End-Stage Renal

Disease (ESRD). We therefore developed two models using nonlinear differential equations:

• The COVID-19 Wave Model, describing the spread of the disease, is a SEIR model fit to U.S. cumulative

mortality data during the third wave (Oct 1, 2020 to Feb 1, 2021). It accounts for mitigation strategies (e.g.,

social distancing, mask wearing), allowing the model to successfully predict daily infections, and to capture the

wave-like behavior of the disease.

• The Compartmental SARS-CoV-2 Model, describing in-host dynamics, simulates the interaction between

viral particles and immune response cells (e.g., T Cells, antibodies). The model fits viral load measurements as

a function of time for infected patients from two different sources.

Given the success of these models in fitting data of otherwise healthy individuals, fitting them to data specific

to patients with ESRD can be used to inform treatment protocols.

Figure 1: The COVID-19 Wave Model is a SEIR model based on the work of Gumel et. al. We implement 

the transmission rate of each infected class, βi, as differential equations of sigmoidal form to mimic changing 

transmission rates due to mitigation strategies. Once hospitalizations pass a certain threshold, the transmission 

rate decreases, reflecting government shutdowns, causing less infections to occur. Transmission rates are then 

pushed back up after the fall in infections, reflecting reopening policies.

Constant β Model Time-Varying β Model

Figure 3: With the time-varying beta, we capture the behavior of other data sets. The simulation for new

cases (left) follows the shape but overshoots the data; this is expected, because the data only accounts for

those who test positive, while the model accounts for anyone who has the virus. The simulation for daily

mortality (right) resembles both the shape and magnitude of the data. By matching data sets without being

explicitly fit to them, our model is shown to be more credible and likely to fit to more data.

Figure 4: This in host model is based on the work of Dogra et. al, and implements both the innate and adaptive 

immune responses to SARS-CoV-2 infection in one organ, the plasma, and lymphatic system. CD8 T-Cells, 

Interferons, and Antibodies (left) directly interact with viral particles and the cells they invade. The Lymphatic 

Compartment (right) shows how other cells transform into or produce these three direct inhibitors.
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